Toll-like receptor 2 contributes to cerebrovascular dysfunction and cognitive impairment in diabetes
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The risk of cognitive decline in diabetes (Type 1 and Type 2) is significantly greater compared to normoglycemic patients, and the risk of developing dementia in diabetic patients is doubled. The etiology for this is likely multifactorial, but one mechanism that has gained increasing attention is decreased cerebral blood flow (CBF) as a result of cerebrovascular dysfunction. The innate immune system has been shown to play a role in diabetic vascular complications, notably through Toll-like receptor (TLR) stimulated release of proinflammatory cytokines and chemokines that leads to vascular damage. TLR2 has been implicated in the development of diabetic microvascular complications such as nephropathy, and thus we hypothesized that TLR2-mediated cerebrovascular dysfunction leads to decreased CBF and cognitive impairment in diabetes. Vascular TLR2 expression was increased and local TLR2 antagonism improved cerebrovascular function in diabetes. While the anti-hyperglycemic dipeptidylpeptidase-IV (DPP-IV) inhibitor linagliptin prevented TLR2 expression in brain microvascular endothelial cells (BMVEC) when applied locally, chronic in vivo treatment did not decrease vascular smooth muscle TLR2 expression. Treatment with linagliptin restored CBF in diabetes independent of effects on blood glucose levels, and this increase in CBF was correlated with decreased endothelin-1 (ET-1)-mediated vasoconstriction, decreased pathological remodeling, and increased endothelium-dependent relaxation. Knockout of TLR2 conferred protection from impaired CBF in early-stage diabetes and from hyperperfusion in long-term diabetes, prevented the development of endothelium dependent vascular dysfunction in diabetes, created a hyperactive and anxiolytic phenotype, and protected against diabetes induced impairment of long term hippocampal- and prefrontal cortex- mediated fear learning. In conclusion, these findings support the involvement of TLR2 in the pathogenesis of diabetic vascular disease and cognitive impairment.