Using peptide-based vaccines to enhance adoptive cell therapy with genetically engineered T cells
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Adoptive cell therapy (ACT) of retrovirally transduced (RV) CD8 T cells is a powerful technique that has shown promise in tumor eradication in cancer patients. However, some major barriers to current methods are that ACT is expensive, time consuming, and requires harmful and toxic adjunct procedures. The Celis laboratory has demonstrated the use of TriVax, a potent peptide vaccination strategy that dramatically expands ACT cell populations and bypasses the necessity for adjunct procedures. The purpose of my thesis project was to enhance current methods of ACT+TriVax by testing an antigen-specific antitumor response of RV CD8 T cells and if it could be improved with constitutively active STAT5 (CA-STAT5) expression, a protein activated downstream several cytokine pathways that have been shown to play a role in increasing CD8 T cell persistence and resistance to apoptosis. Here, I aimed to test the hypothesis that CA-STAT5 in CD8 T cells enhances an antitumor effect by increasing T cell persistence and efficacy. My results show that TriVax administration selectively expanded frequencies of the ACT cell population expressing gp100-TCR in both blood and spleen. When co-transduced with CA-STAT5, an even higher fold expansion of antigen-specific cells was observed. +CA-STAT5 T cells were able to expand more robustly than -CA-STAT5 T cells upon repeated antigen stimulation (vaccine boost), demonstrating nearly 4000-fold increases in antigen-specific CD8 T cells. +CA-STAT5 T cells also seemed to persist longer in vivo over time, and they expressed lower levels of surface PD-1. Using B16F10 melanoma, ACT+TriVax of these cell populations into tumor-bearing mice demonstrated a powerful antitumor effect, leading to tumor regression in treated groups. CA-STAT5 seemed to recapitulate similar antitumor effects our laboratory observed previously with combinatorial anti-PD-L1 treatment or IL2/anti-IL2 mAb complexes (IL2Cx), suggesting a potential role for STAT5 in resisting the PD-1/PD-L1 inhibitory pathway. Altogether, these results demonstrate that RV CD8 T cells expressing gp100-TCR and CA-STAT5 are capable of antigen-dependent expansion in response to TriVax. CA-STAT5 plays a role in increasing T cell proliferation and persistence, as well as increasing efficacy through resistance to PD-1/PD-L1 inhibition.