The Effects of pp60v-src Expression on the Development of the Chicken Optic Tectum
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The chicken optic tectum (OT) develops from the dorsal mesencephalon (midbrain) and processes crossed input from each retina. Previous experiments using a replicationdeficient retrovirus that contained the marker gene lacZ have demonstrated the normal pattern of development for the OT. Clonal cohorts derived from a single neuroepithelial stem cell migrate both radially and tangentially and differentiate into many types of neurons and at least three types of glia (radial glia and two types o f astrocytes). The goal of our laboratory is to identify important proteins involved in tectal development by: (1) directly altering expression of endogenous proteins through senseor antisense-containing retroviruses, or (2) indirectly altering endogenous protein expression or function by retroviral expression of an exogenous protein. These two approaches will allow us to determine which proteins are important in the normal and abnormal development of tectal clones. Many processes are involved in the development of the OT: proliferation, migration, differentiation, and synapse formation. Four non-receptor tyrosine kinases of the Src family (c-src, c-src+, fyn, and yes) are expressed in a spatially and temporally regulated manner in the nervous system. Their expression patterns in neural cells in vivo and in vitro have implicated these Src family members in all four of the major developmental processes mentioned above. Knockout mice of these three Src family members individually (c-src, fyn, or yes), however, show few or no overt neural developmental abnormalities. These unexpected results indicated that other members of the Src family can assume the roles of the missing kinase. Knockout mice for the major known negative regulator of Src family kinases, Csk (c-src kinase), however, show severe developmental abnormalities and defects in neural tube closure. These mice died around E9-E10 and showed elevated kinase activity for at least three Src family members (c-src, fyn, and Iyn). This fact makes it impossible to conclude that the overactivity of any one Src family tyrosine kinase is responsible for the developmental defects observed, and the early death of these embryos prevents the study of neural cell lineage, migration and differentiation in vivo. Given these results, the use of antisense to reduce expression of c-src would yield little information about the role of this kinase in neural development due to functional redundancy among Src family kinases. I decided to express in tectal clones an unregulated member of the Src family, pp60“'src, to determine how its expression alters normal tectal development. The v-src oncogene of Rous sarcoma virus was the first member of the Src family to be discovered, v-src encodes an activated tyrosine kinase (pp60,'"irc) which has lost a critical regulatory tyrosine present in the carboxy terminus of all other Src family members. Consequently, pp60'fcsrc expression affects the proliferation, migration and differentiation of many cell types in vitro and in vivo, but the effects of its expression on neural development in vivo are not well characterized. Expression of this kinase in tectal clones will provide an excellent system to study how a single unregulated Src kinase influences development of the nervous system. Expression o f a protein (pp60v'src) known to affect many different processes (proliferation, migration/cell adhesion and differentiation) in tectal clones will allow us to answer many questions of biological significance: (1) Is the proliferative potential of neuroepithelial stem cells restricted in vivo, or can stem cells generate clones of larger size?, (2) If multiple cell adhesion systems are presumptively inactivated in pp60N,rc - expressing tectal neuroblasts, then how will clonal migration patterns differ from the norm?, (3) Is clonal differentiation in the OT controlled by only extracellular influence (e.g., growth factors, gradients) or can the developmental fate of stem cell progeny be altered by expression of pp60’'src. In the first set of experiments I wanted to determine how wild-type pp60w'5rc expression alters the development of tectal clones in vivo. I used a replication-deficient retrovirus (LZIS), which efficiently coexpresses both LacZ and pp60fcrc, to determine the effects of pp60,,'rc expression on several clonal parameters: cell number, migration pattern, and differentiation. In the next set of experiments I constructed and tested retroviral vectors which efficiently coexpress LacZ and mutated pp60w‘src proteins with deleted SH2 or SH3 domains (LZISASH2 and LZISASH3). These domains normally allow the pp60u'rc tyrosine kinase to associate with certain cellular proteins which contain phosphotyrosines or a proline-rich stretch of amino acids, respectively. Mutation or deletion of these domains alters the biochemical and biological function of pp60^rc. I hoped to determine if the SIC or SID domains of pp60v'src are necessary for the wild-type pp60ltsrc phenotype, and to determine if they afford a unique but altered clonal phenotype compared to wild-type pp60v^rc. These experiments are novel in that they demonstrate that the overexpression of activated forms of Src family kinases influences development of the vertebrate brain. I conclude from my results that: (1) the proliferative potential of neuroepithelial stem cells in the OT is not restricted, (2) tangential migration of neuroblasts in the developing OT appears enhanced with pp60fcrc expression, and (3) the proper differentiation of radial glia is hindered but not prevented by pp60lHirc