Efficacy of Epigallocatechin-3-gallate-palmitate as a Virucidal Compound Against Norovirus
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Norovirus is a highly infectious, non-enveloped virus found to be the leading cause of global gastroenteritis outbreaks. Every year within the United States, this virus is responsible for an average of 19-21 million cases of acute gastroenteritis, approximately 570-800 deaths, and has been the cause of 1.7 to 1.9 million outpatient visits. On a global scale, healthcare costs and lost productivity are estimated to $60 billion due to illnesses and outbreaks caused by the burden of norovirus. Unfortunately, current measures to prevent the transmission of norovirus remain insufficient as the Center for Disease Control and Prevention (CDC) can only recommend hand washing with soap and water as the best preventative measure. The only other hand hygiene method available is alcohol-based hand sanitizers, but the CDC states that they are not effective in inactivating norovirus particles and warns that it should not be considered a substitute to hand washing. Recently, epigallocatecin-3-gallate (EGCG) a major component extracted from the leaves of Camellia sinensis, also commonly known as tea plant, has shown potential to be the next viable candidate as an antiviral solution. Lipid derivatives of EGCG, most notably EGCGpalmitate, has shown to express potent antiviral properties and has showed to play a crucial role in the fight against other non-enveloped viruses such as poliovirus and adenovirus. In this study, we determined the efficacy of EGCG-palmitate in novel formulations against human norovirus surrogates by utilizing the EU international standards for hand hygiene in vitro studies against norovirus. Evidence is provided determining the virucidal activity of alcohol-based ProtecTeaV formulations containing EGCG-palmitate as well as the potential for EGCG-palmitate as a persistent residual virucidal activity against norovirus surrogates, feline calicivirus (FCV) and murine norovirus-1 (MNV-1). By creating an effective, environmentally friendly, non-toxic and long lasting solution composed of EGCG-palmitate, the results of this innovative approach would expand the options available to reduce the transmission of norovirus essentially bridging the gap for a new preventative hand hygiene and ultimately impacting the spread of norovirus on a worldwide scale.
Description
item.page.type
Thesis