DNA METHYLATION REGULATION IN ACUTE KIDNEY INJURY
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
DNA methylation is a critical epigenetic mechanism, which is heritable during cell division, but does not involve the change of DNA sequence. It plays an essential role in regulating gene transcription in physiological and disease conditions. However, little is known about DNA methylation in renal diseases, especially in acute kidney injury (AKI). In this study, the role of DNA methylation in AKI was determined in both cell culture and mouse models. In cell culture, 5-aza-2’-deoxycytidine (5-aza), a pharmacological DNA methylation inhibitor, was used to inhibit DNA methylation. Interestingly, 5-aza increased both cisplatin- and hypoxia-induced apoptosis. These results suggest pharmacologic blockade of DNA methylation by 5-aza sensitizes renal tubular cells to apoptosis, supporting a cytoprotective role of DNA methylation in AKI. To determine the role of DNA methylation in vivo, we first successfully established conditional knockout mice that were deficient in DNMT1, DNMT3a or both exclusively in proximal tubules. In cisplatin-induced AKI, consistent with the effects of 5-aza in the cell culture, ablation of DNMT1 from proximal tubules exacerbated cisplatin-induced AKI in mice, and primary proximal tubular cells from PT-DNMT1-KO mice were more sensitive to cisplatin-induced apoptosis than wild-type cells. In sharp contrast, PT-DNMT1/3a-DK mice attenuated cisplatin-induced AKI, and primary proximal tubular cells from PT-DNMT1/3a-DK mice were more resistant to cisplatin-induced apoptosis. However, PT-DNMT3a-KO mice and PT-DNMT3a-WT mice showed similar AKI following cisplatin treatment. These results suggest different DNMTs play different roles in cisplatin-induced AKI. In ischemic AKI, none of the conditional knockout models showed differences in response to ischemia-reperfusion injury. Nevertheless, although ablation of both DNMT1 and DNMT3a in proximal tubular cells did not affect ischemia-reperfusion injury, it, indeed, suppressed renal fibroblast activation and ameliorated renal fibrosis. Furthermore, we found that Irf8 was regulated by DNA methylation during cisplatin treatment and knockdown of Irf8 in RPTC cells inhibited cisplatin-induced apoptosis, supporting a pro-death role of Irf8 in renal tubular cells. In ischemic AKI, although Bcl6 is hypermethylated and repressed in mice, overexpression of Bcl6 in RPTC cells had no impact on hypoxia-induced apoptosis. Collectively, these results suggest an important role of DNA methylation in AKI by regulating specific genes expression.