Rapamycin, an evolving role in up-regulation of autophagy to improve stroke outcome and increase neuronal survival to stroke type injuries

Date

2015-10

Authors

Buckley, Kathleen

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Rapamycin was shown to reduce infarct size in a non-reperfusion and a slow reperfusion model of murine stroke; it also improved neurological score and survival in the slow-reperfusion model. The rapamycin improvement was 50 percent greater than that observed with chloroquine. In HT22 mouse hippocampal neurons, rapamycin was shown to improve survival to an oxidative/reperfusion injury with H2O2 and a hypoxic/ischemic injury with oxygen and glucose deprivation to a larger degree than chloroquine. Rapamycin treatment increased punctate microtubule light chain associated protein 3, LC3, in the HT22 neurons in an uninjured and oxygen and glucose deprivation injured HT22 neurons compared to untreated neurons. Finally, genetic knockdown of autophagy with shRNA to autophagy protein 5, ATG5, abrogated the rapamycin’s positive effect on survival to injury.

Description

Keywords

Reperfusion, Hippocampus, Mice, Gene Knockdown Techniques

Citation

DOI