Classifying Rheumatoid Arthritis Risk with Genetic Subgroups Using Genome-Wide Association

Date

2010-04

Authors

Letter, Abraham J.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Structured genome-wide association methods can be used to find population substructure, determine significant SNPs, and subsequently narrow down the field of SNPs to those most significant for determining disease risk. Beginning with more than 500,000 SNPs and rheumatoid arthritis (RA) phenotype data for cases and controls, we used a three-part clustering approach that found 684 SNPs significant for determining RA after accounting for clusters, and of those, 168 SNPs with differing odds across clusters. These 168 SNPs were used to create 16 population subgroups, each revealing a unique pattern of minor allele frequencies. The subgroups showed some commonality in multi-dimensional scaling plots, however, and were combined into five RA risk categories, each with odds differing from the other categories with pvalues less than 0.0001. Thus, based on SNP information from 168 SNPs it may be possible to assign an individual into one of five distinct RA risk categories.

Description

The file you are attempting to access is currently restricted to Augusta University. Please log in with your NetID if off campus.

Keywords

Rheumatoid Arthritis, Population Substructure, Structured Association, Genome-Wide Association, PLINK

Citation

DOI