Mechanisms of Estrogen Neuroprotection in Stroke

Date

2011-04

Authors

Raz, Limor

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

17-β estradiol (17-β-E2) has been implicated to be neuroprotective, yet the mechanisms underlying 17-β-E2-mediated protection against stroke remain unclear. The purpose of the current study was to elucidate the role of 17-β-E2 in NADPH oxidase (NOX2) activation during ischemic reperfusion induction of superoxide (O2 -) in the hippocampus CA1 region following global cerebral ischemia (GCI) and to investigate the post-translational deacetylation of downstream pro-apoptotic factors by 17-β-E2. Using a 4-vessel occlusion model to induce GCI, we showed that neuronal NOX2 localizes to the membrane and that NADPH oxidase activity and O2 - production were rapidly and markedly attenuated by 17-β-E2 following reperfusion, in an estrogen receptor-dependent manner. Inhibition of NADPH oxidase activation via icv administration of a NOX2 competitive inhibitor, gp91ds-tat, strongly attenuated O2 - production and was neuroprotective. The increase of neuronal NOX2 and O2 - following cerebral ischemia was shown to require Rac1 activation, as administration of a Rac1 inhibitor (NSC23766) significantly attenuated these factors following stroke. Interestingly, we found that 17-β-E2 antioxidant ability to diminish neuronal NOX2-induced O2 - generation involves the attenuation of Rac1 activation. We also provide evidence for 17-β-E2 post-translational deacetylation of downstream pro-apoptotic p53 and a reduction of p53 transcriptional target, Puma. Our results revealed that p53 acetylation (activation) is markedly increased in ischemic animals 24h after reperfusion and that 17-β-E2 strongly attenuated that elevation, as well as total p53 protein levels. In support of this suggestion, we also found 17-β-E2 to strongly attenuate ischemia-mediated Puma upregulation, thus interfering with its transcription-dependent function. We further propose that 17-β-E2-induced attenuation of p53 levels may involve an upregulation in p53-Mdm2 interactions and p53 mediated degradation via the ubiquitination pathway. Lastly, we provide evidence showing that treatment with Gp91ds-tat, but not the scrambled tat peptide control, attenuated acetylation of downstream p53 and reduced levels of Puma, thus supporting O2 —p53 crosstalk signaling after stroke. Altogether, our studies reveal a novel, membrane-mediated antioxidant mechanism of 17-β-E2-induced neuroprotection via reduction of neuronal NOX2 activation and O2 - production, while providing evidence for 17-β-E2–mediated deacetylation and inactivation of p53, thereby protecting the hippocampus CA1 against cerebral ischemia.

Description

The file you are attempting to access is currently restricted to Augusta University. Please log in with your NetID if off campus.

Keywords

Estrogen, Neuroprotection, Global Cerebral Ischemia, Hippocampus

Citation

DOI