Statistical Methods to Detect Deferentially Methyleated Regions with Next-Generation Sequencing Data

Date

2016-07-07

Authors

Hu, Fengjiao

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Researchers in genomics are increasingly interested in epigenetic factors such as DNA methylation because they play an important role in regulating gene expression without changes in the sequence of DNA. Abnormal DNA methylation is associated with many human diseases, including various types of cancer. We propose three different approaches to test for differentially methylated regions (DMRs) associated with complex traits, while accounting for correlations within and among CpG sites in the DMRs. One approach is a nonparametric method using a kernel distance statistic and the second one is a likelihood-based method using a binomial spatial scan statistic. Both of these approaches detect differential methylation regions between cases and controls along the genome. The kernel distance method uses the kernel function, while the binomial scan statistic approach uses a mixed effect model to incorporate correlations among CpG sites. Extensive simulations show that both approaches have excellent control of type I error, and both have reasonable statistical power. The binomial scan statistic approach appears to have higher power, while the kernel distance method is computationally faster. We also propose a third method under the Bayesian framework for comparing methylation rates when disease status is classified into ordinal multinomial categories (e.g., stages of cancer). The DMRs are detected using moving windows along the genome. Within each window, the Bayes factor is calculated to compare the two models corresponding to constant vs. monotonic methylation rates among the groups. As in the case of the scan statistic approach, the correlations between the sites are incorporated using a mixed effect model. Results from extensive simulation indicate that the Bayesian method is statistically valid and reasonably powerful to detect DMRs associated with disease severity. The proposed methods are demonstrated using data from a chronic lymphocytic leukemia (CLL) study.

Description

Keywords

DMRs, bionomial scan statistic, Bayes factor, distance statistic

Citation

DOI